近红外漫反射光谱无损预测片剂硬度研究

邱素君, 罗晓健, 张国松, 林剑鸣, 王跃生, 何雁

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (11) : 904-909.

PDF(1850 KB)
PDF(1850 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (11) : 904-909. DOI: 10.11669/cpj.2016.11.009
论著

近红外漫反射光谱无损预测片剂硬度研究

  • 邱素君1, 罗晓健2, 3, 张国松2, 林剑鸣3, 王跃生2, 何雁3*
作者信息 +

Non-Destructive Prediction of Tablet Hardness by Near Infrared Diffuse Reflection Spectroscopy

  • QIU Su-jun1, LUO Xiao-jian2, 3, ZHANG Guo-song2, LIN Jian-ming3, WANG Yue-sheng2, HE Yan3*
Author information +
文章历史 +

摘要

目的 建立近红外快速预测片剂硬度的方法。方法 采用硬度仪获得片剂真实硬度,运用偏最小二乘回归法(PLSR)和反向人工神经网络(BP-ANN)法建立近红外光谱与硬度之间的校正模型。结果 偏最小二乘回归模型的相关系数r=0.977 8,内部交叉验证均方根误差(RMSECV)为0.742 kg,预测均方根误差(RMSEP)为0.815 kg;反向人工神经网络训练集、监控集和测试集的相关系数r分别为0.987 3、0.985 6、0.986 8,各数据集的相对标准偏差(RSE%)分别为6.83%、8.77%、6.69%。结论 反向人工神经网络非线性模型预测准确度要优于偏最小二乘回归线性模型。

Abstract

OBJECTIVE To establish a method for predicting tablet hardness by near infrared diffuse reflection spectroscopy. METHODS Tablet hardness value was obtained by hardness meter. Calibration model between NIR spectra and the hardness was establish by partial least squares regression (PLSR) method and BP-ANN method. RESULTS Correlation coefficients (r), root mean squares error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) obtained by PLSR model were 0.977 8, 0.742 and 0.815 kg respectively. And the correlation coefficients of training set, monitor set and testing set by BP-ANN were 0.987 3, 0.985 6, and 0.986 8, with RSE% of 6.83%, 8.77%, and 6.69%, respectively. CONCLUSION The prediction accuracy of BP-ANN nonlinear model is superior to the PLSR model

关键词

近红外漫反射光谱 / 硬度 / 反向人工神经网络 / 偏最小二乘回归法

Key words

near infrared diffuse reflection spectrum / hardness / back-propagation artificial neural networks / PLSR

引用本文

导出引用
邱素君, 罗晓健, 张国松, 林剑鸣, 王跃生, 何雁. 近红外漫反射光谱无损预测片剂硬度研究[J]. 中国药学杂志, 2016, 51(11): 904-909 https://doi.org/10.11669/cpj.2016.11.009
QIU Su-jun, LUO Xiao-jian, ZHANG Guo-song, LIN Jian-ming, WANG Yue-sheng, HE Yan. Non-Destructive Prediction of Tablet Hardness by Near Infrared Diffuse Reflection Spectroscopy[J]. Chinese Pharmaceutical Journal, 2016, 51(11): 904-909 https://doi.org/10.11669/cpj.2016.11.009
中图分类号: R944   

参考文献

[1] LU W Z. Modern Near Infrared Spectroscopy Analytical Technology. 2nd Ed(现代近红外光谱分析技术. 第二版)[M]. Beijing:China Petrochemical Press,2007.
[2] MORISSEAU K M, RHODES C T. Near-infrared spectroscopy as a nondestructive alternative to conventional tablet hardness testing[J]. Pharm Res,1997,14(1):108-111.
[3] CHEN Y, THOSAR S S, FORBESS R A, et al. Prediction of drug content and hardness of intact tablets using artificial neural network and near-infrared spectroscopy[J]. Drug Dev Ind Pharm,2001,27(7):623-631.
[4] TANABE H, OTSUKA K, OTSUKA M. Theoretical analysis of tablet hardness prediction using chemoinformetric near-infrared spectroscopy[J]. Anal Sci,2007,23(7):857-862.
[5] LIU P, LIANG Y Z,ZHANG L,et al. Artificial neural networks applied in the analysis of chemical data(I)—approximation for trend and over-fitting [J]. Chem J Chin Univ(高等学校化学学报),1996,17(6):861-865.

基金

“十二五”重大新药创制专项(2012ZX09102201011);江西省科技厅科技计划专项(20151BBG70031);江西中医药大学科技计划(2013ZR0076)
PDF(1850 KB)

Accesses

Citation

Detail

段落导航
相关文章

/